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EFFECT OF COVER GAS PRESSURES ON ACCELERATED 

CAVITATION DAMAGE 

by Stanley G. Young and James R. Johnston 

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio 

SUMMARY 

An investigation was made to study the effect of pressure on the re- 

sistance to cavitation damage of materials under consideration for com- 

ponents of liquid-metal power conversion systems. A vibratory apparatus 

was used to subject three materials, AISI 316 stainless steel, L-605, 

and Stellite 6B to accelerated cavitation damage in sodium at 800' F ' 

('700' K). Argon cover gas was used to maintain pressures up to 

4 atmospheres (4x10 N/m ) during test. Volume loss and volume-loss 5 2 

rate measurements were used to compare the effects of pressure on 

the degree of damage. Metallographic studies were conducted to de- 

termine the nature of damage. 

Increasing cover -gas pressure significantly increased cavitation 

damage to all materials for all exposure times. The materials ranked 

in the same order with respect to resistance to cavitation damage at all 

pressures; Stellite 6B was most resistant, I L-605 intermediate', and 

AISI 316 stainless steel least resistant. The steady-state volume-loss 

rate based on total specimen area increased linearly with cover-gas 

pressure. When the volume-loss rate data were normalized to in- 

clude only the heavily damaged area of the specimens, the steady- 

state volume-loss rate increased as a power function of pressure. 

Metallographic examination of axially sectioned specimens revealed 

- 
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undercutting and transgranular cracking as well as subsurface de- 

formation for all materials. 

INTRODUCTION 

Components of advanced space power systems have shown cavi- 

tation damage in the form of pitting and surface erosion when tested 

for several hundred hours in liquid metal loops (refs. 1 to 3). Pro- 

posed power systems must function for 10 000 hours or longer and it 

is important to determine the resistance to cavitation damage of can- 

didate materials in advance of service. Studies are being made of the 

resistance of materials to cavitation attack in liquid metals using ac- 

celerated types of laboratory tests, and considerable data describing 

material performance under cavitating conditions have been obtained. 

Some of the more recent of these investigations are described in ref- 

erences 4 to 6. 

Extensive research is also being conducted to investigate the 

mechanism of cavitation and how the process causes material dam- 

age. Some of this work is presented in references 7 to 9. The proc- 

ess can briefly be described as follows: When local pressures in 

fluids fall below the fluid vapor pressure, cavities form. The pres- 

sure within a cavity o r  cavitation bubble is believed to be near the 

vapor pressure of the fluid (ref. 10). When these cavities are then 

subjected to regions of higher pressure, they collapse with high ve- 

locity. If the collapse occurs on a solid surface such as a metal, 

localized high pressures can be transmitted to the surface resulting 

in severe damage. 
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In power conversion systems, fluid pressures can vary, depending 

on the operating conditions, from near the fluid vapor pressures at the 

pump inlet to hundreds of psi at the pump outlet. Similarly in sub- 
i mersible vehicles for marine applications, ambient fluid pressures 

can increase significantly with depth. Therefore, it is important to 

establish the effect of pressure on cavitation damage to materials in 

order to achieve a better understanding of the cavitation phenomenon 

which is encountered in so many different engineering applications. 

Some early studies were made to determine the effect of higher 

pressures on accelerated cavitation damage in water (ref. 11). These 
5 skidies showed that increasing pressure up to 2 atmospheres (2x10 

N/m ) increased cavitation damage, but higher pressures up to 

4 atmospheres (4x10 N/m ) suppressed damage, Most other investi- 

gations of accelerated cavitation damage, have been performed at am- 

bient pressures approximately equal to atmospheric pressure. 

2 

5 2 

Greatly simplified, the difference between the local ambient pres- 

sure and the vapor pressure may be considered to be the net pressure 

or head available to collapse an existing cavitation bubble. The greater 

this pressure difference, or driving force, the higher will be the ve- 

locity of the fluid bubble wall impacting the surface. A s  a result, the 

impact force will be higher and the resulting cavitation damage will be 

greater. Isolating the pressure effect is thus extremely important in 

achieving a better understanding of the cavitation phenomenon. The 

problem is complicated by the interrelations among fluid temperature 

and pressure and material properties. 
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The purposes of this investigation were (1) to determine the effect 

of inereasing ambient pressure on cavitation damage to materials in a 

vibratory test apparatus, (2) to compare the relative ranking of mate- 

rials at both high and low pressures, and (3) to investigate some of the 

metallurgical aspects of cavitation damage. 

In conducting this investigation, three materials with widely dif - 
ferent mechanical properties were tested in sodium at 800' F (700' K) 

using a magnetostrictive vibratory apparatus. Argon cover gas was 

used over the liquid sodium to maintain pressures ranging from one to 

four atmospheres. Cavitation damage was determined by obtaining 

volume-loss measurements and by metallographic studies. 

MATERIALS, APPARATUS, AND PROCEDURE 

Materials 

The materials investigated were AISI type 316 stainless steel, and 

the cobalt-base alloys, L-605 HS-25) and Stellite 6B. These three 

materials were chosen because of the wide differences they exhibited 

to cavitation damage in sodium at atmospheric pressure (ref. 4). AISI 

type 316 stainless steel showed low resistance to cavitation damage. 

L-605 showed intermediate resistance to damage. Stellite 6B was the 

most damage resistant alloy. The nominal chemical composition of 

each alloy is listed in table I. The beat treatments, densities, and 

mechanical properties are given in table 11. 

Reactor grade sodium (99.95 percent purity) was used as the test 

fluid. Chemical analyses indicated an initial oxygen level of less than 
/' 
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10 ppm for the sodium. Purity of the sodium was maintained by the 

addition of a titanium-sponge hot trap to the liquid-metal bath. 

Accelerated Cavitation Damage Test Facility 

The apparatus used is shown schematically in figure 1. A complete 

description of the facility and test procedure is given in reference 4. 

Figure 1 illustrates the vacuum dry-box arrangement, magnetostric- 

tive transducer assembly, and separately sealed liquid-metal test 

chamber with associated argon line, vapor trap, and pressure gage. 

The dry box and test chamber were evacuated to a pressure of approxi- 
2 mately lom3 t o r i  (0.13 N/m ) and backfilled with high purity argon 

prior to testing. 

The specimen was attached to the end of a resonant system con- 

sisting of a transducer, exponential horn, and an extension-rod speci- 

men holder. The amplitude and frequency of vibration were detected 

by a magnetic pickup, and readl on an oscilloscope. An automatic feed- 

back system maintained constant amplitude irrespective of variations 

in resonant frequency induced by temperature changes. 

When the transducer assembly was lowered into position, a sleeve 

attached to the nodal flange on the amplifying horn sealed the liquid- 

metal test chamber from the dry box, and the test chamber pressure 

was regulated through a separate argon line. Pressures were meas- 

ured with a precision pressure gage having an accuracy of 0.25 per- 

cent. 
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Test Conditions 

The test conditions for each material are listed in table 111. A l l  

tests were run in sodium at 80Oo&1O0 F (700' K); the vapor pressure 

of sodium at this temperature is 0.015 psia (1.03X10 N/m ) (ref. 12). 

The frequency of vibration of the test specimens was nominally 25 000 Hz, 

and the peak to peak displacement amplitude was 0.00175rtO. 00005 inch 

(4. 45X10m2 mm). The specimen surface was immersed to a depth of 

approximately 0. 13 inch (3.3 mm). 

2 2 

- 

Test Procedure 

The type of a specimen used is shown in figure 2. The test sur- 

face of each specimen was metallographically polished before test to 

allow meaningful examination of the specimen surface at high magni- 

fication during the early stages of damage. Prior to the test, the 

specimens were weighed and photographed. After each period of op- 

eration, the specimens were cleaned, weighed and rephotographed. 

Weight-loss measurements were divided by density to obtain volume 

loss * 

Test duration was dependent on the volume-loss rate of each 

specimen. In most cases, the testing of a specimen was stopped after 

it maintained a relatively constant volume loss between weighings. 

After testing, the specimens were sectioned axially and examined 

metallographically to determine the depth of cavitation attack and to 

study any reaction zones that might exist between the sodium and the 

specimen material. 



7 

CAVITATION DAMAGE RESULTS 

Cavitation damage, expressed as cumulative volume loss and as 

volume-loss rate is plotted against time for each material tested in 

figures 3 to 5. The effect of pressure on the rate of cavitation damage 

is plotted in figures 6 and 7. Cavitation damage data me also summa- 

rized in table IV. The results of metallographic studies are presented 

in  figures 8 to 13. 

Volume Loss and Volume-Loss Rate 

The cavitation damage to L-605 at 1, 2, 3, and 4 atmospheres 
5 2 (1, 2, 3, and 4x10 N/m ) is shown as volume loss and as volume-loss 

rate in figures 3(a) and (b), respectively. Volume-loss rate curves 

were obtained by dividing the volume loss between successive weiglhings 

by the increment of test time between them. These values were then 

plotted midway between the weighing times. From figure 3, it is evi- 

dent that cavitation at higher pressures results in (1) higher cumulative 

volume loss, (2) a higher volume-loss rate peak, and (3) a higher level 

of steady-state volume-loss rate. The steady-state region is defined 

in this investigation as the zone of minimum volume-loss rate after 

the damage rate has passed through a peak. In this region, the 

volume-loss rate does not change significantly over an extended period 

of time, and values for a relatively steady-state damage rate can be 

determined. It is interesting to note that the shape of the rate curve 

varies with pressure (fig. 3(a)). A s  the pressure is increased, the 

peak of the damage rate curve is higher and narrower and occurs 

earlier. 

4 
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During the one atmosphere test, the first L-605 specimen tested 

failed at the threaded joint after 90 minutes exposure. The test was 

repeated with a second specimen and continued for 360 minutes. Dam- 

age was slight during the first 90 minutes, and the data were virtually 

identical for the two specimens. Consequently, one smooth curve was 
5 2 drawn through the data. At 3 atmospheres (3x10 N/m ), a similar 

specimen failure occurred after 120 minutes. A second specimen was 

therefore run and the test continued for a total 360 minutes. Because 

the cumulative volume loss of the two specimens run at the same pres- 

sure showed a .difference of about 10 cubic millimeters at the 120 minute 

point, separate curves are plotted in figure 3. 

Figure 3(b) shows that the volume-loss rate curves increase for 
5 5 2 the specimens tested at 3 and 4 atmospheres (3x10 and 4x10 N/m ) 

after 240 minutes. This increase is most likely due to undercutting 

of the surface by cavitation and the resultant loss of large particles of 

material. Some large particles of specimen material were found in 

the sodium bath. Further evidence of such undercutting is presented in 

the section dealing with the metallographic studies. 

Volume loss and volume-loss rate curves are shown in  figure 4 

for AIS1 type 316 stainless steel at 1, 2.7, and 4 atmospheres (1, 2.7, 

and 4x10 N/m ). Similar curves for Stellite 6B are shown in figure 5. 5 2 

Increasing the test pressure increased the cumulative volume loss in 

each case and both materials exhibited steady-state volume-loss rates 

that increased with increasing pressure. However, the volume-loss 
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rate peaks were not as well defined as for the L-605 specimens 

(fig. 3(b)). 

The effect of pressure on the volume loss of the Stellite 6B speci- 

mens was not as clearly defined as in the case of the other materials. 

There is relatively little spread between the 2.7- and 4- atmosphere 

(2. 7x105 and 4 ~ 1 0 ~  N/m ) test results. The unusual behavior of this 

material may be due, in part, to the changing patterns of the damage. 

This will be discussed further in the section on metallography. Al- 

though there is an overlap of the rate curves for Stellite 6B (fig. 5(b)), 

the peak damage rate and steady-state damage rate increase with in- 

2 

creasing test pressure. 

Relation Between Steady-State Volume - Loss Rate and Pressure 

The steady-state volume-loss rates for L-605, AIS1 316 stainless 

steel and Stellite 6B determined from figures 3(b), 4(b), and 5(b), re- 

spectively, are listed in table IV. These values are plotted against 

pressure in figure 6. When it is assumed that cavitation damage can 

be expressed by the steady-state volume-loss rate of a material, dam- 

age increases linearly with ambient pressure for the pressure range 

considered. Of course, under other test conditions (different ampli- 

tudes of vibration, temperature, specimen size, etc. ) this relation 

might not hold true. It is important to note that the resulting linear 

relation is based on the conventional method of measuring cavitation 

damage which does not take into account the damage pattern. 

/ 

. '1. 
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From the photographs of figures 8 to 11, it is obvious that there 

is an area of heavy damage, and a surrounding area of little or no dam- 

age on the tested specimens. The heavily damaged area was reduced 

in size but the depth of damage increased as the cover-gas pressure 

was increased. If the volume-loss rate data are normalized on the 

basis of damaged area only, the effect of pressure on volume-loss rate 

will no longer be linear, but volume-loss rate will vary as a power of 

pressure. The normalized cavitation damage data are listed in table V 

and plotted in figure 7. In figure 7, the slopes of the curves for AIS1 

316 stainless steel, L-605, and Stellite 6B a re  2.0, 2.2, and 2.7, re- 

spe ctively . 
.The results of the present investigation differ from those obtained 

by previous investigators (ref. 11). Using a low-frequency (6500 Hz) 

magnetostrictive device in water, they found that for a given exposure 

time, damage increased with increasing pressure up to about 2 atmo- 

spheres (2x10 N/m ) and subsequently decreased as pressure was 

further increased. No damage was observed at 4 atmospheres (4x10 
2 N/m ). It may be that, because the apparatus used for the eariler 

tests (ref. 11) had a relatively low frequency resulting in relatively 

low fluid velocities, cavitation was greatly reduced at the higher am- 

bient pressures. The high-frequency device used in the present in- 

vestigation is, however, capable of generating cavitation at these 

higher ambient pressures. 

5 2 

5 

From figures 6 and 7, it is apparent that materials have the same 

relative ranking with respect to cavitation damage resistance at high 
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pressures that they have at atmospheric pressure. Accelerated mate- 

rial damage tests, therefore, may be run at higher ambient pressures, 

and test time can be shortened by at least an order of magnitude. 

An AIS1 316 stainless-steel specimen was run for a test time of 

16 hours at 0.5 atmosphere. During the last 8 hours of this test, the 

specimen had a steady-state damage rate of approximately 0.5 cubic 

millimeter per hour. This value is also plotted on figure 6. It is 

believed that a zero damage rate occurs when cover-gas pressure is 

very near the vapor pressure of the fluid. 

It can be observed from figure 6 that the cruves for more severly 

damaged materials have the steeper slopes, and it would appear that 

the relative effect of pressure on the damage rate is greater for the 

less resistant materials. If, however, the data are normalized (fig. 7), 

this trend is reversed; that is, the curves of the more resistant mate- 

rials have steeper slopes and the relative effect of pressure on the 

damage rate is greater for the more resistant materials. 

Metallography 

Macrographs were taken of all the specimens tested. The damaged 

surfaces of L-605 specimens are illustrated in figure 8. After only 

15 minutes severe damage is evident in specimens exposed at 4 atmo- 

spheres (4x10 N/m ); whereas, the specimens exposed at 1 atmosphere 

(1x10 N/m ) show very little damage even after 60 minutes of testing. 

5 2 

5 2 
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Several large projections can be seen in the central portion of the sur-  

faces of specimens exposed for 360 minutes at 3 and 4 atmospheres 

(3x10 and 4x10 N/m ). Undercutting and loss of such projections are 

believed to be the reason the volume-loss rate curves (fig. 3(b)) showed 

an increase at the longer exposure times. Evidence of undercutting is 

apparent in the macrographs of figure 9. This figure clearly shows 

the increasing depth and amount of attack with increasing pressure. 

Wider undamaged r ims and greater undercutting are evident in the 

specimens tested at higher pressures. Calculated areas of heavy dam- 

age are shown in table V. 

5 5 2 

Damaged surfaces of 316 stainless steel and Stellite 6B speci- 

mens are shown in figures 10 and 11, respectively. As in the case 

of L-605, damage at 4 atmospheres (4x10 N/m ) was much more 

severe than that at 1 atmosphere (1x10 N/m ), and damage was pri- 

marily concentrated in the central region of the specimens. The AISI 

316 stainless-steel specimen sustained such a severe attack at 4 atmo- 

spheres (4x10 N/m 

Although not shown, the heavily damaged specimens of AISI 316 

stainless steel and Stellite 6B were also sectioned and macrographs 

were taken. These had a similar appearance to the sectioned L-605 

specimens shown in figure 9. 

5 2 

5 2 

5 2 that even portions of the rim were damaged. 

Photomicrographs were taken of the surfaces of the L-605 speci- 

mens in the early stages of cavitation attack. These together with the 

original microstructure of an L-605 specimen are shown in figure 12. 
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The specimen was electrolytically etched with a solution of hydrochloric 

acid (30 ml) and hydrogen peroxide (3 drops), and was repolished before 
5 testing. Specimens tested at pressures above 2 atmospheres (2x10 

N/m ) were damaged too severely to show significant features under 

high magnification. In all cases during the early stages of damage, 

attack along grain and twin boundaries was noted. 

2 

Figure 13 shows photomicrographs of sectioned specimens of all 

materials before and after testing. All  the materials tested exhibited 

gross undercutting and transgranular cracking. Evidence of subsur - 
face deformation existed in the form of slip bands for all materials. 

Bending of twin boundaries was observed in L-605 (fig. 13(a)). Break- 

ing of subsurface carbides in Stellite 6B is apparent in figure 13(c). 

No evidence of any reaction zone was found in the cavitation damaged 

regions of any specimen. 

Comparison of Accelerated Cavitation Damage 

and Pump Impeller Test Results 

An interesting example of the effect of pressure on cavitation 

damage to a pump impeller operated in a liquid metal has been reported 

in reference 1. In this investigation, an impeller of AIS1 316 stainless 

steel was operated first in water at room temperature then in potas- 

sium at 1400' F (1033' K). Photographs were taken of the cavitation 

cloud formations near the impeller vanes during operation in water at 

various pump inlet pressures and flow conditions. From these photo- 

graphs (figs. 26 to 30 in ref. 1) it can be seen that, in general, ex- 
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tensive cavitation cloud formations occurred in the low-pressure re - 
gions near the inlet. Higher pressure regions showed considerably less 

cavitation. 

After the impeller was run in potassium at 1400' F (1033' K) for 

350 hours, impeller vanes were examined for cavitation damage. 

Severe vane damage occurred in the region of higher fluid pressure 

while little or no damage was noted near the inlet where lower fluid 

pressures were encountered. These results indicate that cavitation 

bubbles collapsing on a metal surface in  a high-pressure region cause 

much more damage than bubbles that collapse on the metal surface in 

a lower pressure region. Thus, observations made in an actual pump 

application agree qualitatively with the results of our accelerated 

tests. 

SUMMARY OF RESULTS 

The effect of pressure on the resistance to cavitation damage of 

candidate materials for components of liquid-metal space power con- 

version systems was investigated. A vibratory apparatus was used. 

Three materials, L-605, Stellite 6B, and AIS1 316 stainless steel were 

subjected to accelerated cavitation damage in 800' F (700' K) sodium 
5 5 under cover gas pressures of 1 to 4 atmospheres (B10 to 4x10 

N/m ). The following results were obtained: 2 

1. Increasing cover-gas pressure significantly increased cavita- 

tion-.daxna.ge to all materials. For example, an L-605 specimen tested 

under 1 atmosphere pressure (WlO N/m ) for 360 minutes exhibited 5 2 
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a volume loss of 10 cubic millimeters, as compared to 200 cubic milli- 

meters after 360 minutes under 4 atmospheres (4x10 N/m ). This 

result implies that in fluid systems where cavitation occurs in high- 

pressure regions, damage to components may be much greater than 

would normally be expected from cavitation tests conducted at atmo- 

spheric pressures, 

5 2 

2. Within the range of conditions (specimen size and cover-gas 

pressures) considered in this investigation, the steady-state volume- 

loss rate (based on total specimen area) for each material increased 

linearly with cover-gas pressure, When the volume-loss rate data 

were normalized to include only the heavily damaged area of the speci- 

mens, the steady-state volume-loss rate increased as a power function 

of pressure with the exponent going from 2.0 to 2.7. 

3. The relative ranking of the materials with respect to resist- 

ance to cavitation damage was the same regardless of cover-gas pres- 

sure. (It was, in order of increasing damage, Stellite 6B, L-605 and 

AIS1 316 stainless steel,) This result together with the fact that the 

damage rate increases with increasing pressure suggests that a greater 

number of materials may be evaluated in a given time at higher pres- 

sures than at atmospheric pressure ., 

4. Metallographic examination of axially sectioned specimens of 

all the materials tested revealed severe undercutting of the surface and / 

transgranular cracking. Subsurface deformation was indicated in all 

materials by the appearance of slip bands, Stellite 6B showed exten- 

sive cracking of carbides beneath the surface, and L-605 exhibited 

some bending of twins near the surface. 
II 
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Zobalt Chro- 
mium 

Bal. 30 

Bal. 20 

--- 18 

Molyb- 
denum 

bl. 5 

---- 

2. 5 

04 03 

1.6 bl. 0 

Ultimate tensile 
strength 

Yield strength 

TABLE I. - NOMINAL CHEMICAL COMPOSITIONS OF TEST MATERIALS 

: percent Composition, weif Material 

Stellite 6Ba 

L-605 
AMS 5759B' 

AISI 316 
stainless steel 
AMS 5648Cc 

aRef. 13. 
bMaximum. 

- 
Iron 

- 
b3 

b3 

Bal. 

- 

Uanga- Silicor I :arboI: rTickel 

- 
b3 

10 

13 

1. 1 

.1 

.08 

I 

'Aerospace Materials Specifications. 

TABLE II. - HEAT TREATMENTy DENSITIESy AND 800' F (700° K) 

MECHANICAL PROPERTIES OF TEST MATERIALS 

Heat treatment Density Elongation, 
percent 

I 

N/m2 I psi I N/m2 t-- Stellite 6Ba 

3 .b/in. 

0.303 

0.330 

0.288 

psi 

138 ooa 

119 000 

70 000 

9. 5X108 I 71 000 1 4. 9X108 29.0 

75.0 

40.0 

Solution heat treated at 
2250' F (1506' K); air cooled 

Solution heat treated at 
2250' F (1560' K); water 
quenched 

L-605b 

AISI 316b Annealed I stainless steel 

aRef. 13. 
bRef. 14. 

t I 



TABLE III. - TEST CONDITIONS 

[Temperature, 800*10° F (700' K); fluid, sodiur~ 
(99.95 percent purity); frequency, 25 000 
k500 Hz; amplitude, 0.00175rtO. 00005 in. 
(4. 45X10m2 mm). ] 

Material 

Stellite 6B 

L-605 

AIS1 316 stainless 
. .  

steel 

Pressure" 

atm 

1 . 0  
2.7 
4 . 0  - 
1.0 
2 .0  
3 . 0  
4 . 0  

1 .0  
2.7 
4 . 0  - 

N/m2 

I. 0 x 1 0 ~  
2 .7  
4 . 0  

I. 0 x 1 0 ~  
2.0 
3 .0  
4 . 0  

I.  0 x 1 0 ~  
2 . 7  
4 . 0  

rota1 test time, 
min 

600 
540 
480 

360 

240 
300 
240 

"Nominal pressure, a. 02 atmosphere. 

? d 



TABLE IV. - SUMMARY OF CAVITATION TEST DATA 

Normalizing 
factor 

1.2 
1.7 
3.6 

1.1 
1. 2 
1.6 
2.0 

Normalized steady-state 

3 mm /hr 

0.6 
8.5 

volume-loss rate, 

26 

2.6 
13 
28 
55 

AIS1 316 stainless 
steel 

1.0 
2. 7 
4.0 

3 Volume loss, mm I mm3/hr 

(0.13 
27.0 
36.1 

(0.04) 
16.8 
29.0 

0.4 1.1 
39.0 49.2 
43.3 51.7 

5.0 7.5 
48.3 59.3 

95.5 113 
130 160 

----- ----- 

18.0 L---- 

119 153 
209 ----- 

3.0 
38.8 

1.0 
25.3 
49.9 
61.3 
74.5 

8.6 
63.3 

124 

----- 
79.1 

102 

13.8 
90.8 

16 5 
2.7 2.7 ---- 
4.0 4.0 71.0 

a 
First specimen. 

bSecond specimen. 

TABLE V. -DETERMINATION OF NORMALIZIED STEADY 

STATE VOLUME LOSS RATE 

Material I at~,essur2 1 Heavy da2magc 
a area, 

mm 

Stellite 6B 1 . 0 ~ 1 0 ~  
2.7 
4.0 

140 
96 
45 

1.0 
2.7 
4.0 

150 
140 
99 
80 

I. 0x10~ 
2.7 
4.0 

130 
96 
74 

a(Average diameter of damaged area) 2 X ¶/4. 

bRatio of total specimen area to heavily damaged area. 
‘Steady-state volume-loss rate (from table IV) X normalizing factor. 
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Figure 1. - Schematic diagram of cavitation apparatus. 
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Figure 2. - Cavitation test specimen. (Dimensions in inches (cm).) 
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Figure 3. - Cavitation damage of L-605 tested in 
800" F (700' K) sodium at various pressures 
(1 atm = -lo5 N/m2b 
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Figure 6. - Relation between cavitation damage 
rate and ambient pressure for materials 
tested in 800" F (700" K) sodium. 
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Figure 7. - k l a t i o n  of cavitation damage, 
normalized to area basis, t o  ambient 
pressure for materials tested in 800" F 
(700" K) sodium. 
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Figure 8. - Damaged surfaces of L-605 specimens after exposure to cavitation in sodium at 8M)" F (700" K) at various times and pressures 

1 2 3 4 

(1 atm =-IO5 Nlm'). 
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Figure 9. - Sections of L-605 specimens after exposure to cavitation in sodium at 800" F (700" K) for 360 minutes at various 
pressures. (Unetched) (1 atm =-lo5 Nlmz). 
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Figure 10. - Damaged surfaces of AIS1 316 stainless-steel specimens after exposure to cavitation in sodium at 
800' F(700" K) at various times and pressures (1 atm =-IO5 N/m2). 
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Figure 11. - Damaged surfaces of Stellite 6B specimens after exposure to cavitation in sodium at 800' F (700" K) at 
various times and pressures (1 atm =-lo5 N/m2). 
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Figure 12. - Photomicrographs of damaged surfaces of L-605 specimens exposed to cavitation in sodium at 830" F (700" K) (1 atm - -lo5 Nlm2). X250. 

2 1 



As-received, X W .  0.001 in. (0.0025 cm) 360-Minute exposure at 1 atmosphere, X500. 

360-Minute exposure at 4 atmospheres, X250. 
(a) L-M)5. 

0.001 in. (0.0025 cm) 

Figure 13. - Photomicrographs of sectioned specimens before and afler exposure to cavitation i n  sodium at 800" F(700" K) (1 atm - - lo5 Nlm2). 
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